0960-894X/97 \$17.00 + 0.00

PII: S0960-894X(97)10012-9

SCH 207278: A NOVEL FARNESYL PROTEIN TRANSFERASE INHIBITOR FROM AN UNIDENTIFIED FUNGUS

Min Chu*, Ronald Mierzwa, Ellen Barrabee, Arthur King, Marc Hallade, Joseph Terracciano, Mahesh G. Patel, Robert Patton, W. Robert Bishop and Mohindar S. Puar

Schering-Plough Research Institute 2015 Galloping Hill Road, Kenilworth, NJ 07033

Abstract: Novel aromatic dialdehyde, Sch 207278 (1), was isolated from an unidentified fungus as an inhibitor of farnesyl protein transferase (FPTase). The structure of 1 was elucidated by spectroscopic methods. Compound 1 exhibited an IC₅₀ value of 3.5 μ M against FPTase and 70 μ M against geranylgeranyl protein transferase-1 (GGPTase-1), respectively. © 1997 Elsevier Science Ltd.

Farnesyl-protein transferase (FPTase) catalyses the farnesylation of Ras (p21) proteins on a cysteine residue of the CAAX sequence (C: a conserved cystine, AA: two aliphatic amino acids, X: a carboxy-terminal residue). ¹⁻³ This post-translational modification of Ras proteins is necessary for their association with plasma membrane and oncogenic activity. ⁴ Therefore, inhibitors of FPTase could suppress tumor growth induced by Ras. Since Ras oncogenes are frequently found in human tumors including 50% of colon and 90% of pancreatic carcinomas, ⁵ inhibition of Ras farnesyl-protein transferase is a potentially attractive therapeutic target for new anticancer agents. Recently, several natural product inhibitors of FPTase have been reported including cembranolide diterpene, ⁶ fusidienol, ⁷ chaetomellic acids, ⁸ and pepticinnamin. ⁹ Our microbial products screening efforts have now led to the isolation of a new inhibitor of FPTase, Sch 207278 (1) produced by an unidentified fungus collected from Equador (culture MYCO-2139). ¹⁰ This paper describes the assay-guided isolation, structure elucidation and biological activity of 1.

Figure 1 Structure of Sch 207278 (1)

The fermentation broth (10 L) was extracted with ethyl acetate at harvest pH (6.8). The residue from EtOAc extraction was subjected to a modified Kupchan partition described as follows: EtOAc extract residue was dissolved in 90% aqueous MeOH (~25 g/L concentration), the solution was partitioned with an equal volume of hexane. The lower aqueous MeOH layer was separated to which 1/8 volume of H₂O (12.5%) was added. The aqueous MeOH solution was then partitioned with an equal volume of CH₂Cl₂. The lower CH₂Cl₂ layer was separated. To the aqueous MeOH layer was added 3/8 volume of H₂O (37.5%) and reextracted with an equal volume of CH₂Cl₂. The combined active CH₂Cl₂ solution was purified by high speed centrifugal partition chromatography (CPC) with a solvent system of hexane:EtOAc:MeOH:H₂O (1.2:0.8:1:1)

2548 M. CHU *et al.*

to obtain pure 111 as a white powder with mp 201~203 °C (dec.).

Fast atom bombardment (FAB) and chemical ionization (CI) mass spectral data of 1 showed a protonated molecular ion $(M+H)^+$ at m/z 287. The molecular formula of $C_{15}H_{10}O_6$ was deduced by HR-FABMS (Calcd: m/z 287.0556 for $C_{15}H_{11}O_6$. Found: m/z 287.0554). Absorption bands in the UV spectrum at 256 and 335 nm suggested a substituted benzene structure. IR absorption at 3428, 1686 and 1645 cm⁻¹ indicated the presence of hydroxyl, conjugated/aromatic carbonyl and bisaromatic carbonyl, respectively. In the ¹H NMR spectrum of 1 (Table 1), two distinctive aldehyde proton singlets were observed at δ 9.59 and 9.94. Five proton resonances were found in the downfield aromatic region at δ 6.99~7.55. In addition, a broad exchangeable singlet at δ 3.40 indicated the presence of three hydroxyl groups based on the integration measurement. The ¹³C NMR data showed three carbonyl signals at δ 200.8, 193.8 and 190.2, which represent one ketone and two aldehyde functionalities, respectively, based on the APT experiment. Observations of five aromatic methine signals at δ 118.0~162.5 suggested the presence of two benzene units, **A** and **B**, to match the unsaturation of 1.

Table 1. ¹H (400 MHz) & ¹³C (100 Hz) NMR Data for 1 & 2^a

No.	1 ^b		2	
	¹³ C (δ)	$\frac{-1}{\text{H}(\delta)}$	¹³ C (δ)	$^{1}H(\delta)$
1	118.0 s ^c		128.1 s	
2	162.5 s		151.5 s	
3	140.7 s		141.8 s	
4	119.9 d	6.93 (d, 8.0)	126.4 d	7.35 (d, 7.8)
5	135.9 d	7.55 (t, 8.0)	134.2 d	7.69 (d, 7.8)
6	119.3 d	7.13 (d, 8.0)	126.3 d	7.37 (d, 7.8)
7	200.8 s		192.0 s	
8	128.1 s		134.1 s	
)	147.3 s		146.1 s	
10	156.6 s		144.1 s	
11	120.7 d	7.35 (d, 1.9)	127.4 d	7.96 (d, 1.9)
12	119.5 s		132.4 s	
13	128.2 d	7.51 (d, 1.9)	130.0 d	8.11 (d, 1.9)
14	190.2 d	9.94 (s)	188.0 d	10.10 (s)
15	193.8 d	9.59 (s)	189.3 d	99.9 (s)
COCH ₃			169.0 s	
COCH₃			167.6 s	
COCH ₃			167.5 s	
CO <u>CH</u> 3			20.85 q	2.40 (s)
CO <u>CH</u> 3			20.60 q	2.32 (s)
COCH ₃			19.95 q	2.01 (s)

a. Recorded in CDCl₃, chemical shift in PPM from TMS, coupling constants (Hz).

It should be noted that the NMR spectra of 1 often showed as a mixture of tautomers plausibly due to the equilibrium of aldehyde and hemiacetal forms. In order to prove this hypothesis and determine the exact

b. A small amount of CD₃OD was used as a cosolvent for 1.

c. Multiplicity was determined based on APT data.

number of hydroxyl groups, acetylation of 1 was carried out with acetic anhydride and pyridine. As predicted both triacetylated products 2 and 4 (ratio 4:1) were obtained from the reaction mixture.¹²

Figure 2 Equilibration of Aldehyde and Hemiacetal Tautomers

Extensive NMR studies including HETCOR, NOESY, and selective INEPT were focused on triacetate 2 since it provided better spectral quality. In the NOESY spectrum, correlations of H-4 to H-5 and H-5 to H-6 revealed that these three protons are adjacent to each other. NOESY correlations of H-15 to H-11 and H-13 suggested that one aldehyde was located between two *meta* protons. This assignment was also supported by the observation of *meta* couplings (J = 1.9 Hz) for H-11 and H-13. Selective INEPT data not only confirmed the assignments of all five aromatic protons by NOESY experiments, but also indicated that H-4, H-5 and H-6 protons were attached to the A ring with two acetates, and H-11 and H-13 protons were attached to the B ring with one acetate and two aldehydes. As depicted in Figure 2, analysis of ¹H-¹³C long range correlation obtained from selective INEPT experiments permitted the establishment of the regiochemistry of each functionality. The SINEPT correlations of H-6 to C-7 and C-8, H-9 to C-7 further established the connectivities of the two benzene rings, A and B, through the ketone carbonyl at position-1 and position-8, respectively. Thus, the structure elucidation of 1 was completed.

Figure 3 Some Important NOESY and Selective INEPT Correlations of 3

Both compound 1 and its triacetate 2 exhibited in vitro inhibitory activity against recombinant human

2550 M. Chu *et al.*

FPTase with IC_{50} s of 3.5 and 2.4 μ M, respectively. In addition, 1 and 2 displayed IC_{50} s of 70 and 85 μ M against geranylgeranyl protein transferase-1 (GGPTase), a closely related isoprenyl protein transferase enzyme to FPTase. Thus both compounds 1 and 2 showed approximately 20 and 35-fold selectivity for FPTase, respectively.

Acknowledgment: Authors are grateful to Mr. Y-H. Ing for low resolution mass spectral data, Mr. P. Bartner for high resolution mass spectral data, and Ms. D. Scott for preparation of this manuscirpt.

REFERENCES AND NOTES

- 1. (a) Gibbs, J. B. Cells 1991, 65, 1. (b) Gibbs, J.B. Semin. Can. Biol. 1992, 3, 383.
- Schaber, M. D.; O'Hara, M. B.; Garsky, V. M.; Mosser, S. D.; Bergstrom, J. D.; Moores, S. L.; Marshall, M. S.; Friedman, P. A.; Dixon, R. A. F.; Gibbs, J. B. J. Biol. Chem. 1990, 265, 14701.
- 3. Reiss, Y.; Goldstein, J.L.; Seabza, M. C.; Casey, P. J.; Brown, M. S. Cells 1990, 62, 81.
- 4. Der, C. J.; Cox, A.D. Cancer Cells 1991, 3, 331.
- 5. (a) Barbacid, M. Ann. Rev. Biochem. 1987, 56, 779. (b) Rodenhuis, S. Semin. Can. Biol. 1992, 3, 241.
- 6. Coval, S. J.; Patton, R. W.; Petrin, J. M.; James, L.; Rothofsky, M. L.; Lin, S. L.; Patel, M.; Reed, J. K.; McPhail, A. T.; Bishop, W. R. Bioorg. Med. Chem. Lett. 1996, 6, 909.
- 7. Singh, S. B.; Jones, E. T.; Goetz, M. A.; Bills, G. F.; Nallin-Omstead, M.; Jenkins, R. G.; Lingham, R. B.; Silverman, K. C.; Gibbs, J. B. *Tetrahedron Lett.* **1994**, *35*, 4693.
- 8. Singh, S. B.; Zink, D. L.; Liesch, J. M.; Goetz, M. A.; Jenkins, R. G.; Nallin-Omstead, M.; Silverman, K. C.; Bills, G. F.; Mosley, R. T.; Gibbs, J. B.; Albers-Schonberg, G.; Lingham, R.B. *Tetrahedron* 1993, 49, 5917.
- 9. Omura, S.; Van der Pyl, D.; Inokoshi, J.; Takahashi, Y.; Takeshima, H. J. Antibiotics 1993, 46, 222.
- 10. The fungus was supplied by Dr. B. Katz from MYCOsearch.
- 11. The purity of 1 was analyzed by normal phase HPLC under conditions as follows: YMC PVA-Sil column, 4.6 x 150 mm, S-5, 120 Å, 40% EtOAc in hexane, isocratic, 1 mL/min, UV detection at 260 nm, 95% purity by area integration normalization.
- 12. To a mixture of 1 (60 mg, 0.21 mmol), pyridine (1 mL) and CH₂Cl₂ (8 mL) at room temperature was added acetic anhydride (0.75 mL, 68 mmol). The reaction mixture was stirred overnight and solvents was removed in vacuo. The residue was purified by HPLC (YMC semi-preparative PVA-Sil column, 20 x 250 mm, S-5, 20~50% EtOAc in hexane with a linear gradient in 30 min, 12 mL/min, UV detection at 270 nm) to afford 20 mg of 2 (see Table 1 for spectral data) and 5 mg of 4. The spectroscopic data of 4: CI-MS (relative intensity) *m/z* 413 (49, MH⁺), 371 (62), 353 (100), 329 (9), 311 (34). ¹H NMR (CDCl₃, 400 MHz) δ 1.95 (s, 3H, COCH₃), 2.38 (s, 3H, COCH₃), 2.43 (s, 3H, COCH₃), 7.41 (d, 1H, J = 8.0 Hz, H-4), 7.60 (t, 1H, J = 8.0 Hz, H-5), 7.73 (s, 1H, H-14), 7.82 (d, 1H, J = 2.1 Hz, H-11), 7.87 (d, 1H, J = 8.0 Hz, H-6), 8.55 (d, 1H, J = 2.1 Hz, H-13), 10.00 (s, 1H, CHO). ¹³C NMR (CDCl₃, 100 MHz) δ 20.4 (q), 20.5 (q), 20.9 (q), 88.2 (d), 125.7 (s), 126.6 (d), 127.5 (d), 127.7 (s), 127.8 (d), 131.3 (d), 132.5 (d), 139.6 (s), 143.3 (s), 146.9 (s), 149.8 (s), 150.8 (s), 167.9 (s), 168.5 (s), 168.8 (s), 188.1 (s), 189.5 (d).
- 13. Bishop, W. R.; Bond, R.; Petrin, J.; Wang, L.; Patton, R.; Doll, R.; Njoroge, G.; Catino, J.; Schwartz, J.; Carr, D.; James, L.; Kirschmeier, P. J. Biol. Chem. 1995, 270, 30611.